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Information in digital computers is represented and processed by electronic networks
called logic circuits. These circuits operate on binary variables that assume one of
two distinct values. usually called 0 and 1. In this appendix we will give a concise
presentation of logic functions and circuits for their implementation. including a briet
review of integrated circuit technology.

A.1 BASIC LOGIC FUNCTIONS

It is helptul to introduce the topic of binary logic by examining a practical problem
that arises in all homes. Consider a lightbulb whose on/off status is controlled by two
switches. x; and x». Each switch can be in one of two possible positions. 0 or 1. as
shown in Figure A.la. It can thus be represented by a binary variable. We will let
the switch names serve as the names of the associated binary variables. The figure
also shows an electrical power supply and a lightbulb. The way the switch terminals
are interconnected determines how the switches control the light. The light will be on
only if a closed path exists from the power supply through the switch network to the
lightbulb. Let a binary variable f represent the condition of the light. If the light is on.
f =1, and if the light is off. f = 0. Thus. f = | means that there is at least one closed
path through the network. and f = 0 means that there is no closed path. Clearly, f is a
function of the two variables x; and x-.

Let us consider some possibilities for controlling the light. First. suppose that the
light is to be on if either switch is in the | position. that is, f =1 if

=1 and x» =0
or

=0 and x» =1
or

=1 and x> =1
The connections that implement this type of control are shown in Figure A.1h. A logic
truth table that represents this situation is shown beside the wiring diagram. The table
lists all possible switch settings along with the value of f for each setting. In logic terms.
this table represents the OR function of the two variables x; and x». The operation is
represented algebraically by a “+" sign or a V" sign. so that

f=x+rn=xVvn

We say that xy and x» are the input variables and f is the outpur function.
We should point out some basic properties of the OR operation. It is commutative.
that is,

X+ = X+
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It can be extended to n variables, so that
f=xi+x+-+x,

has the value 1 if any variable x; has the value 1. This represents the effect of connecting
more switches in parallel with the two switches in Figure A.1b. Also, inspection of the
truth table shows that

l+x=1
and
O+x=x

Now, suppose that the light is to be on only when both switches are in the 1 position.
The connections for this, along with the corresponding truth-table representation, are
shown in Figure A.Ic. This is the AND function, which uses the symbol “-” or “A™ and
is denoted as

f=x-Xx2=x1Ax3
Some basic properties of the AND operation are
X)Xy = X3 - Xy
l - x=x
and
0-x=0
The AND function also extends to n variables, with
f=x1 X" Xn

having the value 1 only if all the x; variables have the value 1. This represents the case
in which more switches are connected in series with the two switches in Figure A.lc.

The final possibility that we will discuss for the way the switches determine the
light status is another common situation. If we assume that the switches are at the two
ends of a stairway, it should be possible to turn the light on or off from either switch.
That is, if the light is on, changing either switch position should turn it off; and if it is
off, changing either switch position should turn it on. Assume that the light is off when
both switches are in the 0 position. Then changing either switch to the 1 position should
turn the light on. Now suppose that the light is on with x; = 1 and x; = 0. Switching x,
back to O will obviously turn the light off. Furthermore, it must be possible to turn the
light off by changing x; to I, thatis, f = 0if x| = x, = 1. The connections to implement
this type of control are shown in Figure A.ld. The corresponding logic operation is
called the EXCLUSIVE-OR (XOR) function, which is represented by the symbol “&".
Some of its properties are

X1 D x> = X2 B X

1&x =%
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and
0@y =ux

where ¥ denotes the NOT function of the variable x. This single-variable function,
f = ¥, has the value | if x = 0 and the value 0 if x = 1. We say that the input x is
being inverted or complemented.

A.1.1 ELECTRONIC LOGIC GATES

The use of switches. closed or open electrical paths, and lightbulbs to illustrate the idea
of logic variables and functions is convenient because of their familiarity and simplicity.
The logic concepts that have been introduced are equally applicable to the electronic
circuits used to process information in digital computers. The physical variables are
electrical voltages and currents instead of switch positions and closed or open paths.
For example, consider a circuit that is designed to operate on inputs that are at either
+5 or 0 volts. The circuit outputs are also at either +5 or 0 V. Now, if we say that +5 V
represents logic 1 and 0 V represents logic 0, then we can describe what the circuit
does by specifying the truth table for the logic operation that it performs.

With the help of transistors, it is possible to design simple electronic circuits that
perform logic operations such as AND, OR, XOR. and NOT. It is customary to use the
name gates for these basic logic circuits. Standard symbols for these gates are shown
in Figure A.2. A somewhat more compact graphical notation for the NOT operation

AND gate

NOT gate

XOR gate

Figure A.2 Standard logic gate
symbols.
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is used when inversion is applied to a logic gate input or output. In such cases. the
inversion is denoted by a small circle.

The electronic implementation of logic gates will be discussed in Section A.5. We
will now proceed to discuss how basic gates can be used to construct logic networks
that implement more complex logic functions.

A.2 SYNTHESIS OF LOGIC FUNCTIONS

Consider the network composed of two AND gates and one OR gate that is shown in
Figure A 3a. It can be represented by the expression

f=x-xn+x-%

The construction of the truth table for this expression is shown in Figure A.35. First. the
values of the AND terms are determined for each input valuation. Then the values of
the function f are determined using the OR operation. The truth table for f is identical

smwa S

R

Input _

inversion :
D

—— 9

Jo= v

(a) Network for the XOR function

f = V)N Y,
o AN Yo ) )
= @.\3
0 0 0 §] 0
0 | | 0 ]
| 0 0 | 1
| | 0 0 0

(b) Truth table construction of v - vy + v, - v,

Figure A.3  Implementation of the XOR function using
AND, OR, and NOT gates.



A.2 SYNTHESIS OF LOGIC FUNCTIONS 667

Table A.1 Two 3-variable functions

X1 X2 x3 fi S
0 0 0 | ]
0 0 I | I
0 I 0 0 1
¢ 1 | i ¢}
1 0 0 0 1

1 0 | 0 1
1 1 0 ¢ 0
I 1 | | g

to the truth table for the XOR function. so the three-gate network in Figure A.3a 1s

an implementation of the XOR function using AND. OR. and NOT gates. The logic

expression ¥y - xa + vy - X2 is called a sum-of-products form because the OR operation

is sometimes called the “sum™ function and the AND operation the “product™ function.
We should note that it would be more proper to write

[ =(F) )+ (1) - (D)

to indicate the order of applying the operations in the expression. To simplify the
appearance of such expressions. we define a hierarchy among the three operations
AND. OR, and NOT. In the absence of parentheses. operations in a logic expression
should be performed in the following order: NOT. AND. and then OR. Furthermore, it
is customary to omit the **™" operator when there is no ambiguity.

Returning to the sum-of-products form. we will now explain how any logic function
can be synthesized in this form directly from its truth table. Consider the truth table
of Table A.1 and suppose we wish to synthesize the function f; using AND, OR, and
NOT gates. For each row of the table in which /1 = 1. we include a product (AND)
term in the sum-of-products form. The product term includes all three input variables.
The NOT operator is applied to these variables individually so that the term is | only
when the variables have the particular valuation that corresponds to that row of the truth
table. This means that if x; = 0. then X, is entered in the product term. and if x; = 1.
then y; is entered. For example. the fourth row of the table has the function entry 1 for
the input valuation

(v v x3) = (0. 1. D)

The product term corresponding to this is X.x2x3. Doing this for all rows in which the
function f has the value | leads to

J1 = X X0N: 4 0 jny X oxy + o

The logic network corresponding to this expression is shown on the left side in
Figure A.4. As another example. the sum-of-products expression for the XOR function
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JI = XX 4 000+ 3 G+ X XaXy fy = a0+

Figure A.4 A logic network for £, of Table A.1 and an equivalent minimal network.

can be derived from its truth table using this technique. This approach can be used
to derive sum-of-products expressions and the corresponding logic networks for truth
tables of any size.

A.3 MINIMIZATION OF LOGIC EXPRESSIONS

We have shown how to derive one sum-of-products expression for each truth table. In
fact, there are many equivalent expressions and logic networks for any particular truth
table. Two logic expressions or logic gate networks are equivalent if they have identical
truth tables. An expression that is equivalent to the sum-of-products expression we
derived for f; in the previous section is
._';fg + XXz

To prove this. we construct the truth table for the simpler expression and show that
it is identical to the truth table for f, in Table A.1. This is done in Table A.2. The
construction of the table for ¥, ¥, + x,x3 is done in three steps. First. the value of the
product term X, X» is computed for each valuation of the inputs. Then x> v3 is evaluated.
Finally, these two columns are ORed together to obtain the truth table for the expression.
This truth table is identical to the truth table for f| given in Table A.1.

To simplify logic expressions we will perform a series of algebraic manipulations.
The new logic rules that we will use in these manipulations are the distributive rule

w(v+2)=wy+ws
and the identity

w+iww =1
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Table A.2 Evaluation of the expression %2 + xzx3

Xt x2 x3 XXz x2X3 XX +x2x3=f1
0 0 0 1 0 1
0 0 1 1 0 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 0 4}
1 1 0 0 0 0
1 1 1 0 1 1

Table A.3 Truthtable technique for proving equivalence of expressions

Left-hand side Right-hand side
w y z y+z w(y +2) wy wz wy + wz
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 | 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
i 0 I i 1 0 1 1
1 1 0 1 1 1 0 |
1 I 1 1 1 1 1 1

Table A.3 shows the truth-table proof of the distributive rule. It should now be clear
that rules such as this can always be proved by constructing the truth tables for the
left-hand side and the right-hand side to show that they are identical. Logic rules, such
as the distributive rule, are sometimes called identities. Although we will not need to
use it here, another form of distributive rule that we should include for completeness is

wHyi=w+yv)(w+2)

The objective in logic minimization is to reduce the cost of implementation of a
given logic function according to some criterion. More particularly. we wish to start with
a sum-of-products expression derived from a truth table and simplify it to an equivalent
minimal sum-of-products expression. To define the criterion for minimization, it is
necessary to introduce a size or cost measure for a sum-of-products expression. The
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usual cost measure is a count of the total number of gates and gate inputs required in
implementing the expression in the form shown in Figure A.4. For example. the larger
expression in this figure has a cost of 21. composed of a total of 5 gates and 16 gate
inputs. Input inversions are ignored in this counting process. The cost of the simpler
expression is 9, composed of 3 gates and 6 inputs. We are now in a position to state that a
sum-of-products expression is minimal if there is no other equivalent sum-of-products
expression with a lower cost. In the simple examples that we will introduce, it is usually
reasonably clear when we have arrived at a minimal expression. Thus, we will not give
rigorous proofs of minimality.

The general strategy in performing algebraic manipulations to simplify a given
expression is as follows. First, group product terms in pairs that differ only in that some
variable appears complemented (¥) in one term and true (v) in the other. When the
common subproduct consisting of the other variables is factored out of the pair by the
distributive rule, we are left with the term x + X, which has the value 1. Applying this
procedure to the first expression for f;, we obtain

SU= TN 4+ X0+ T 4 g
= XXXy + x3) + () 4+ 0y
= XX 1+ 1 HR SR
= T]Tz + 1oy

This expression is minimal. The network corresponding to it is shown in Figure A 4.

The grouping of terms in pairs so that minimization can lead to the simplest ex-
pression is not always as obvious as it is in the preceding example. A rule that is often
helpful is

W w=w

This allows us to repeat product terms so that a particular term can be combined with

Table A.4 Rules of binary logic

Name Algebraic identity

Commutative W y=yw wy = yw

Associative w+W+o=w+(y+2) vz =w(yz)

Distributive wHvyi=m4+ vIw+2) wiy +2) =wy+uz

Idempotent W= ww =

Involution W=

Complement ww=1 Wit =

de Morgan WHY=WT T =w+7T
I+w=1 0-w=0

O+w=w -w=w
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more than one other term in the factoring process. As an example of this. consider the
function f5 in Table A.1. The sum-of-products expression that can be derived for it
directly from the truth table is

Jr = XN 4 VA 4 0Ny XX g

By repeating the first product term ¥, ¥~xz and interchanging the order of terms (by the
commutative rule), we obtain

Jr = X003 X003 XXXy TN R N X e Xy
Grouping the terms in pairs and factoring yields
fr =X EA0 4 x3) 0 ((E 4 ) + 0 (0 00X

=X X0 4 XX 4 XX

12

The first pair of terms is again reduced by factoring. and we obtain the minimal
expression

fr =T 41T

This completes our discussion of algebraic simplification of logic expressions.
The obvious practical application of this mathematical exercise stems from the fact that
networks with fewer gates and inputs are cheaper and easier to implement. Therefore. it
is of economic interest to be able to determine the minimal expression that is equivalent
to a given expression. The rules that we have used in manipulating logic expressions
are summarized in Table A.4. They are arranged in pairs to show their symmetry as
they apply to both the AND and OR tunctions. So far, we have not had occasion to use
either involution or de Morgan’s rules. but they will be found to be useful in the next
section.

A.3.1 MINIMIZATION USING KARNAUGH MAPS

In our algebraic minimization of the functions f; and f> of Table A.1. it was necessary
to guess the best way to proceed at certain points. For instance. the decision to repeat
the term ¥, X>X; as the first step in minimizing f> is not obvious. There is a geometric
technique that can be used to quickly derive the minimal expression for a logic function
of a few variables. The technique depends on a different form for presentation of the
truth table. a form called the Karnaugh map. For a three-variable function, the map is
a rectangle composed of eight squares arranged in two rows of four squares each. as
shown in Figure A.5«. Each square of the map corresponds to a particular valuation of
the input variables. For example. the third square of the top row represents the valuation
(x1.x2.x03) = (1. 1.0). Because there are eight rows in a three-variable truth table, the
map obviously requires eight squares. The entries in the squares are the function values
for the corresponding input valuations.

The key idea in the formation of the map is that horizontally and vertically adjacent
squares correspond to input valuations that differ in only one variable. When two
adjacent squares contain |s. they indicate the possibility of an algebraic simplification.
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Figure A.5 Minimization using Karnaugh maps.
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In the map for f; in Figure A.5a, the 1 values in the leftmost two squares of the top
row correspond to the product terms ¥, X,X3 and X, x,¥3. The simplification

f]fp_)(} + f],’(zf} = 5(71,?3

was performed earlier in minimizing the algebraic expression for f,. This simplification
can be obtained directly from the map by grouping the two s as shown. The product
term that corresponds to a group of squares is the product of the input variables whose
values are constant on these squares. If the value of input variable x; is O for all 1s of a
group, then X; is entered in the product, but if x; has the value 1 for all s of the group,
then x; is entered in the product. Adjacency of two squares includes the property that the
left-end squares are adjacent to the right-end squares. Continuing with our discussion
of f3, the group of four 1s consisting of the left-end column and the right-end column
simplifies to the single-variable term ¥, because x; is the only variable whose value
remains constant over the group. All four possible combinations of values of the other
two variables occur in the group.

Karnaugh maps can be used for more than three variables. A Karnaugh map for four
variables can te obtained from two 3-variable maps. Examples of four-variable maps
are shown in Figure A.5b, along with minimal expressions for the functions represented
by the maps. In addition to two- and four-square groupings, it is now possible to form
eight-square groupings. Such a grouping is illustrated in the map for gs. Note that the
four corner squares constitute a valid group of four and are represented by the product
term X»X4 in g>. As in the case of three-variable maps, the term that corresponds to a
group of squares is the product of the variables whose values do not change over the
group. For example, the grouping of four Is in the upper right-hand corner of the map
for g, is represented by the product term x,¥; because x; = | and x3 = 0 over the
group. The variables x> and x4 have all the possible combinations of values over this
group. It is also possible to use Karnaugh maps for five-variable functions. In this case,
two 4-variable maps are used, one of them corresponding to the 0 value for the fifth
variable and the other corresponding to the 1 value.

The general procedure for forming groups of two, four, eight, and so on in Karnaugh
maps is readily derived. Two adjacent pairs of 1s can be combined to form a group of
four. Similarly, two adjacent groups of four can be combined to form a group of eight.
In general, the number of squares in any valid group must be equal to 2¥, where k is an
integer.

We will now consider a procedure for using Karnaugh maps to obtain minimal
sum-of-products expressions. As can be seen in the maps of Figure A.S, a large group
of Is corresponds to a small product term. Thus, a simple gate implementation results
from covering all the 1s in the map with as few groups as possible. In general, we should
choose the smallest set of groups, picking large ones wherever possible, that cover all
the 1s in the map. Consider, for example, the function g, in Figure A.5h. As we have
already seen, the 1s in the four corners constitute a group of four that is represented by
the product term ¥,X4. Another group of four exists in the upper right-hand corner and
is represented by the term x;X3. This covers all the 1s in the map except for the 1 in the
square where (xy., X2, x3, x4) = (0, 1, 0, 1). The largest group of 1s that includes this
square is the two-square group represented by the term x,X3x4. Therefore, the minimal
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expression for g» is
g2 = Ny 4 VN3 + 1Xsy

Minimal expressions for the other functions shown in the figure can be derived in a
similar manner. Note that in the case of g, there are two possible minimal expressions.
one including the term X |.xv>.x, and the other including the term vy x3xy. [tis often the
case that a given function has more than one minimal expression.

In all our examples. it is relatively easy to derive minimal expressions. In general.
there are formal algorithms for this process. but we will not consider them here.

A.3.2 DON’T-CARE CONDITIONS

In many situations. some valuations of the inputs to a digital circuit never occur. For
example, consider the binary-coded decimal (BCD) number representation. Four bi-
nary variables b3. b>. by, and by represent the decimal digits 0 through 9. as shown in
Figure A.6. These four variables have a total of 16 distinct valuations. only 10 of which
are used for representing the decimal digits. The remaining valuations are not used.
Therefore. any logic circuit that processes BCD data will never encounter any of these
six valuations at its inputs.

Figure A.6 gives the truth table for a particular function that may be performed
on a BCD digit. We do not care what the function values are for the unused input
valuations; hence. they are called don’t-cares and are denoted as such by the letter =d”
in the truth table. To obtain a circuit implementation. the function values corresponding
to don’t-care conditions can be arbitrarily assigned to be either 0 or 1. The best way to
assign them is in a manner that will lead to a minimal logic gate implementation. We
should interpret don’t-cares as s whenever they can be used to enlarge a group of 1s.
Because larger groups correspond to smaller product terms. minimization is enhanced
by the judicious inclusion of don’t-care entries.

The function in Figure A.6 represents the following processing on a decimal digit
input: The output f is to have the value | whenever the inputs represent a nonzero digit
that is evenly divisible by 3. Three groups are necessary to cover the three Is of the
map. and don’t-cares have been used to enlarge these groups as much as possible.

A.4 SYNTHESIS WITH NAND AND NOR GATES

We will now consider two other basic logic gates called NAND and NOR. which are
extensively used in practice because of their simple electronic realizations. The truth
table for these gates is shown in Figure A.7. They implement the equivalent of the AND
and OR functions followed by the NOT function. which is the motivation for the names
and standard logic symbols for these gates. Letting the arrows “4" and | denote
the NAND and NOR operators. respectively. and using de Morgan’s rule in Table A 4.
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Decimal digit | Binary coding
represented by by by b f
0 0 0 00 0
| 0 0 01 0
2 0 010 0
3 g 01 1 1
4 01 00 0
5 0 1 0 1 0
6 O 1 10 1
7 O 1 1 1 0
8 1 00 0 0
9 1001 1
1010 d
1o 11 d
unused broo d
11 01 d
110 d
[ I | d

bib,

byh\. 00 01 11 10

00 0 0 d

0
01 0 0 /'\I\
101 0 Cl_i

o

[=%

5
i

r l 1 ‘ 1T l 1
F=b3by+bbby+ bbby

Figure A.6 Fourvariable Karnaugh map
illustrating don't cares.

we have

and

Xy vo=2x +1n=x371

NAND and NOR gates with more than two input variables are available. and they
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(a) NAND (b) NOR

Figure A.7 NAND and NOR gates.

operate according to the obvious generalization of de Morgan’s law as
X1 T X2 T Txu =X X, =X+ X+ + X,

and

xlxod - ly=xito+ - +x=XX2 %,

Logic design with NAND and NOR gates is not as straightforward as with AND,
OR, and NOT gates. One of the main difficulties in the design process is that the as-
sociative rule is not valid for NAND and NOR operations. We will expand on this
problem later. First, however, let us describe a simple, general procedure for synthe-
sizing any logic function using only NAND gates. There is a direct way to translate a
logic network expressed in sum-of-products form into an equivalent network composed
only of NAND gates. The procedure is easily illustrated with the aid of an example.
Consider the following algebraic manipulation of a logic expression corresponding to
a four-input network composed of three 2-input NAND gates:

(x1 T x2) 1 (3 1 xy) = (NX0)(X3X3)
= X% + Xaxa
= X1X2 + X3X4

We have used de Morgan’s rule and the involution rule in this derivation. Figure A.8
shows the logic network equivalent of this derivation. Since any logic function can be
synthesized in a sum-of-products (AND-OR) form and because the preceding derivation
is obviously reversible, we have the result that any logic function can be synthesized
in NAND-NAND form. We can see that this result is true for functions of any number
of variables. The required number of inputs to the NAND gates is obviously the same
as the number of inputs to the corresponding AND and OR gates.
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iD= 1
B3
3
D

) <>

1
Figure A.8 Equivalence of NAND-NAND and AND-OR networks.

Let us return to the comment that the nonassociativity of the NAND operator can
be an annoyance. In designing logic networks with NAND gates using the procedure
illustrated in Figure A.8, a requirement for a NAND gate with more inputs than can be
found on standard commercially available gates may arise. If this happens when one is
using AND and OR gates. there is no problem because the AND and OR operators are
associative, and a straightforward cascade of limited fan-in gates can be used. The case
of implementing three-input AND and OR functions with two-input gates is shown in
Figure A.9a. The solution is not as simple in the case of NAND gates. For example, a
three-input NAND function cannot be implemented by a cascade of 2 two-input NAND
eates. Three gates are needed. as shown in Figure A.9b.

A discussion of the implementation of logic functions using only NOR gates pro-
ceeds in a similar manner. Any logic function can be synthesized in a product-of-sums
(OR-AND) form. Such networks can be implemented by equivalent NOR-NOR net-
works.

The preceding discussion introduced some basic concepts in logic design. Detailed
discussion of the subject can be found in any of a number of textbooks (see References
1,3,7-11).

It is important for the reader to appreciate that many different realizations of a
given logic function are possible. For practical reasons, it is useful to find realizations
that minimize the cost of implementation. It is also often necessary to minimize the
propagation delay through a logic network. We introduced the concept of minimization
in the previous sections to give an indication of the nature of logic synthesis and the
reductions in cost that may be achieved. For example. Karnaugh maps graphically show
the manipulation possibilities that lead to optimal solutions. Although it is important
to understand the principles of optimization of logic networks, it is not necessary to do
the optimization by hand. Sophisticated computer-aided design (CAD) programs exist
for such synthesis. The designer needs to specify only the desired functional behavior,
and the CAD software generates a cost-effective network that implements the required
functionality.
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(a) Implementing three-input AND and OR functions with two-input gates
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(b) Implementing a three-input NAND function with two-input gates

)m

Figure A.9 Cascading of gates.

A.5 PRACTICAL IMPLEMENTATION OF LOGIC GATES

Let us now turn our attention to the means by which logic variables can be represented
and logic functions can be implemented in practice. The choice of a physical parameter
to represent logic variables is obviously technology-dependent. In electronic circuits.
either voltage or current levels can be used for this purpose.

To establish a correspondence between voltage levels and logic values or states. the
concept of a threshold is used. Voltages above a given threshold are taken to represent
one logic value, with voltages below that threshold representing the other. In practical
situations, the voltage at any point in an electronic circuit undergoes small random
variations for a variety of reasons. Because of this “noise.” the logic state corresponding
to a voltage level near the threshold cannot be reliably determined. To avoid such
ambiguity, a “forbidden range” should be established. as shown in Figure A.10. In this
case, voltages below V, ., represent the O value. and voltages above V) ,,;, represent
the I value. In subsequent discussion, we will often use the terms “low™ and “high™ to
represent the voltage levels corresponding to logic values 0 and 1, respectively.

We will begin our discussion of electronic circuits that implement basic logic
functions by considering simple circuits consisting of resistors and transistors that act
as switches. Consider the circuits in Figure A.11. When switch S in Figure A.1la is
closed, the output voltage V,,, is equal to 0 (ground). When S is open, the output
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Figure A.10 Representation of logic values by
voltage levels.
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Figure A.11  An inverter circuit.

voltage V., is equal to the supply voltage. V... The same effect can be obtained in
Figure A.11b, in which a transistor T is used to replace the switch S. When the input
voltage applied to the gate of the transistor is 0 (that is. when V;, = 0). the transistor
is equivalent to an open switch, and V.., = Vi, When V;, changes to V. the
transistor acts as a closed switch and the output voltage V,,,, is very close to 0. Thus.
the circuit performs the function of a logic NOT gate.
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We can now discuss the implementation of more complex logic functions. Fig-
ure A.12 shows a circuit realization for a NOR gate. In this case. V,,,, in Figure A.12a
is high only when both switches S, and S, are open. Similarly. V., in Figure A.12)
is high only when both inputs V, and Vj, are low. Thus, the circuit is equivalent to a
NOR gate in which V, and V,, correspond to two logic variables x; and x>, We can
easily verify that a NAND gate can be obtained by connecting the transistors in series
as shown in Figure A.13. The logic functions AND and OR can be implemented using
NAND and NOR gates, respectively, followed by the inverter of Figure A.1].

V,\'u/rpl\ v\upp/\'
R R
- vmrl Vuu/
S \ Sh\ Va ‘I I, YV —l[ T,
(a) (b)

Figure A.12 A transistor circuit implementation of a NOR gate.
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)
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\ s
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(a by =
Figure A.13 A transistor circuit implementation of a
NAND gate.
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Note that NAND and NOR gates are simpler in their circuit implementations than
AND and OR gates. Hence, it 1s not surprising to find that practical realizations of logic
functions use NAND and NOR gates extensively. Many of the examples given in this
hook show circuits consisting of AND, OR. and NOT gates for ease of understanding.
In practice. logic circuits contain all five types of gates.

A.5.1 CMOS CIrcuIrs

Figures A.11 through A.13 illustrate the general structure of circuits implemented using
NMOS technology. The name derives from the fact that the transistors used to realize
the logic functions are of NMOS type. Two types of metal-oxide semiconductor (MOS)
transistors are available for use as switches. An n-channel transistor is said to be of
NMOS-type, and it behaves as a closed switch when its gate input is raised to the positive
power supply voltage, V.. as indicated in Figure A.14«. The opposite behavior is
achieved with a p-channel transistor, which is said to be of PMOS type. It acts as an
open switch when the gate voltage, V. is equal to V... and as a closed switch

V[) V[) =0V VI)
VG —| ! N\
VS = 0 V — - i
Closed switch Open switch
when Vi = V00 when V; =0V

(a) NMOS transistor

VS = V.\upp/\' V,vup[r/y V,\u,npl\
VG —4
Vi Vi Vo= Vippn
Open switch Closed switch
when Vi = Vo when V=0V

(b) PMOS transistor

Figure A.14 NMOS and PMOS transistors in logic circuits.
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when V; =0, as indicated in Figure A.14b. Note that the graphical symbol for a PMOS
transistor has a bubble on the gate input to indicate that its behavior is complementary
to that of an NMOS transistor. Note also that the names source and drain are associated
with the opposite terminals of PMOS transistors in comparison with NMOS transistors.
The source of an NMOS transistor is connected to ground, while the source of a PMOS
transistor is connected to Vi, This naming convention is due to the nature of the
current that flows through these transistors.

A drawback of the circuits in Figures A.11 through A.13 is their power consump-
tion. In the state in which the switches are closed to provide a path between ground
and the pull-up resistor R, there is current flowing from Vi, to ground. In the op-
posite state, in which switches are open. there is no path to ground and there is no
current flowing. (In MOS transistors no current tlows through the gate terminal.) Thus,
depending on the states of its gates, there may be significant power consumption in a
logic circuit.

An effective solution to the power consumption problem lies in using both NMOS
and PMOS transistors to implement circuits that do not dissipate power when in a steady
state. This approach leads to the CMOS (complementary metal-oxide semiconductor)
technology. The basic idea of CMOS circuits is illustrated by the inverter circuit in
Figure A.15. When V, = Vy,,,,;,, which corresponds to the input x having the logic
value 1, transistor T is turned off and 7> is turned on. Thus, 75 pulls the output voltage
V; down to 0. When V, changes to 0, transistor 7 turns on and 75 turns off. Thus, 7}
pulls the output voltage V up to V.. Therefore, the logic values of x and f are
complements of each other, and the circuit implements a NOT gate.

A key feature of this circuit is that transistors 77 and 7> operate in a complementary
fashion; when one is on. the other is off. Hence, there is always a closed path from the
output point f to either Vj,,,;, or ground. There is no closed path between V, ., and
ground at any time except during a very short transition period when the transistors are
changing their states. This means that the circuit does not dissipate appreciable power
when it is in a steady state. It dissipates power only when it is switching from one logic

!

'Y\"uppl_\

() V— "
e fnn] v
O | low | on off { high | |
I { high| off on | low | 0
(a) Circuit (b) Truth table and transistor states

Figure A.15 CMOS redlization of a NOT gate.



A.5 PRACTICAL IMPLEMENTATION OF LOGIC GATES

v.\ upply

Pull-up network

Vi (D

. Pull-down network

L

Figure A.16 Structure of a CMOS circuit.

state to another. Therefore, power dissipation in this circuit is dependent on the rate at
which state changes take place.

We can now extend the CMOS concept to circuits that have »n inputs, as shown
in Figure A.16. NMOS transistors are used to implement the pull-down network, such
that a closed path is established between the output point f and ground when a desired
function F(xy,...,. x,) is equal to 0. The pull-up network is built with PMOS tran-
sistors, such that a closed path is established between the output / and Vi, when
F(xy,....x,) is equal to 1. The pull-up and pull-down networks are functional com-
plements of each other, so that in steady state there exists a closed path only between
the output f and either V,,,,;, or ground, but not both.

The pull-down network is implemented in the same way as shown in Figures A.11
through A.13. Figure A.17 gives the implementation of a NAND gate, and Figure A.18
gives a NOR gate. Figure A.19 shows how an AND gate is realized by inverting the
output of a NAND gate.

In addition to low power dissipation, CMOS circuits have the advantage that MOS
transistors can be implemented in very small sizes and thus occupy a very small area
on an integrated circuit chip. This results in two significant benefits. First, it is possible
to fabricate chips containing millions of transistors, which has led to the realization of
modern microprocessors and large memory chips. Second, the smaller the transistor,
the faster it can be switched from one state to another. Thus, CMOS circuits can now
be operated at speeds in the gigahertz range.

Different CMOS circuits have been developed to operate with power supply volt-
ages in the range from 1.5 to 15 V. The most commonly used power supplies are 5 V
and 3.3 V. Circuits that use lower power supply voltages dissipate much less power
(power dissipation is proportional to VYZ,,],I?,\.). which means that more transistors can
be placed on a chip without causing overheating. A drawback of lower power supply
voltage is reduced noise immunity.
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Vsupply
Ty 4 T,
Ve
Vi, —e T, Xp X | Ty I, T3 Ty | f
0 0 on on off off 1
0 1 on off off on 1
Ve, T, 1 0 | off on on off | |
11 off off on on 0
(a) Circuit (b) Truth table and transistor states
Figure A.17 CMOS realization of a NAND gate.
Vxl(17ply
V.t, O Tl
Ve, q| 7,
_] v, Xp & | Ty Ty T3 Ty | f
—! 0 0 on on off off 1
‘l T3 ] Ty 0 1 on off off on | 0
1 0 off on on off | 0
1 1 off off on on 0
(a) Circuit (b) Truth table and transistor states

Figure A.18 CMOS realization of a NOR gate.

Transitions between low and high signal levels in a CMOS inverter are illustrated in
more detail in Figure A.20. The blue curve, known as the transfer characteristic, shows
the output voltage as a function of the input voltage. The curve indicates that a rather
sharp transition in output voltage takes place when the input voltage passes through the
value of about Vi,,.,;./2. There is a threshold voltage, V;, and a small value § such that
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Figure A.19 CMOS realization of an AND gate.
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Figure A.20 The voltage transfer characteristic for the CMOS
inverter.
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ot = Vegppie 1f Vi, < Vi =8 and V,,,, = 011 V,,, > V; + 4. This means that the input
signal need not be exactly equal to the nominal value of either O or Vy,,,,;, to produce
the correct output signal. There is room for some error. called noise, in the input signal
that will not cause adverse effects. The amount of noise that can be tolerated 1s called
the noise margin. This margin is V0 — (V; + 8) volts when the logic value of the
input is 1. and it is V, — § when the logic value of the input is 0. CMOS circuits have
excellent noise margins.
In this section. we have introduced the basic features of CMOS circuits. For a more
detailed discussion of this technology the reader may consult References [1] and [8].

A.5.2 PROPAGATION DELAY

Logic circuits do not switch instantaneously from one state to another. Speed is mea-
sured by the rate at which state changes can take place. A related parameter is propa-
gation delay, which is defined in Figure A.21. When a state change takes place at the
input. a delay is encountered before the corresponding change at the output is observed.
This propagation delay is usually measured between the 50-percent points of the transi-
tions. as shown in the figure. Another important parameter is the transition time, which
is normally measured between the 10- and 90-percent points of the signal swing. as
shown. The maximum speed at which a logic circuit can be operated decreases as the

Transition time

V| _—

Input waveform

90%
Vo ~
Propagation delay
Vi
/ 900
Output waveform 50%
V() l()(/(
-~

Transition time

Figure A.21 Definition of propagation delay and transition time.
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propagation delay through difterent paths within that circuit increases. The delay along
any path in a logic circuit is the sum of individual gate delays along this path.

A.5.3 FAN-IN AND FAN-OUT CONSTRAINTS

The number of inputs to a logic gate is called its fun-in. The number of gate inputs that
the output of a logic gate drives is called its fun-out. Practical circuits do not allow large
fan-in and fan-out because they both have an adverse effect on the propagation delay
and hence the speed of the circuit.

Each transistor in a CMOS gate contributes a certain amount of capacitance. As the
capacitance increases. the circuit becomes slower and its signal levels and noise margins
become worse. Therefore, it is necessary to limit the tan-in and fan-out. typically to a
number less than ten. If the number of desired inputs exceeds the maximum fan-in. it is
necessary to use an additional gate of the same type. Figure A .9« shows how two gates
of the same type can be cascaded. If the number of outputs that have to be driven by a
particular gate exceeds the acceptable fan-out. it is possible to use two copies of that gate.

A.5.4 TRI-STATE BUFFERS

In the logic gates discussed so far. it is not possible to connect the outputs of two gates
together. This would make no sense from the logic point of view because if one gate
generated an output value of | and the other an output of ), it would be uncertain what
the combined output signal would be. More importantly. in CMOS circuits, the gate that
generates the output of 1 establishes a direct path from the output terminal t0 Vi,
while the gate that generates 0 establishes a path to ground. Thus. the two gates would
provide a short circuit across the power supply. which would damage the gates.

Yet. in the design of computer systems. there are many cases where an input signal
to a circuit may be derived from one of a number of different sources. This can be
done using multiplexer logic circuits, which are discussed in Section A.10. It can also
be done using special gates called rri-state buffers. A tri-state buffer has three states.
Two of the states produce the normal 0 and [ signals. The third state places the output
terminal of the buffer into a high-impedance state in which the output is electrically
disconnected from the input it is supposed to drive.

Figure A.22 depicts a tri-state bufter. The bufter has two inputs and one output. The
enable input, ¢, controls the operation of the buffer. When ¢ = 1. the output f has the
same logic value as the input.x. When ¢ = 0. the output is placed in the high-impedance
state. Z. An equivalent circuit is shown in Figure A.22b. The triangular symbol in this
figure represents a noninverting driver. This is a circuit that performs no logic operation
because its output merely replicates the input signal. Its purpose is to provide additional
electrical driving capability. When combined with the output switch shown in the figure.
it behaves according to the truth table given in Figure A.22¢. This table describes the
required tri-state behavior. Figure A.22d shows a circuit implementation of the tri-state
huffer. One NMOS and one PMOS transistor are connected in parallel to implement
the switch. which is connected to the output of the driver. Because the two transistor
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(c) Truth table (d) Implementation

Figure A.22 Tri-state buffer.

types require complementary control signals at their gate inputs. an inverter is used as
shown. When ¢ = 0. both transistors are turned off, resulting in an open switch. When
e = 1, both transistors are turned on, resulting in a closed switch.

The driver circuit has to be able to drive a number of inputs of other gates whose
combined capacitance may exceed the drive capability of an ordinary logic gate circuit.
To provide a sufficient drive capability. the driver circuit needs larger transistors. Hence.
the two cascaded NOT gates that realize the driver are implemented with transistors of
larger size than in regular logic gates.

The reader may wonder why is it necessary to use the PMOS transistor in the
output switch because from the logic function point of view the same behavior could
be achieved using just the NMOS transistor. The reason is that these transistors have to
“pass’ the logic value generated by the driver circuit to the output f, and it turns out
that NMOS transistors pass the logic value 0 well but the logic value | poorly. while
PMOS transistors pass | well and O poorly. The parallel arrangement of NMOS and
PMOS transistors passes both Is and Os well. For a more detailed discussion of this
issue and tri-state buffers in general. the reader may consult Reference [1].

A.5.5 INTEGRATED CIRCUIT PACKAGES
The main features of electronic circuits used to implement logic functions were dis-

cussed in previous sections. In practical design. it is necessary to use integrated circuits
(1Cs) that are commercially available. When ICs became available in the 1960s, there
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(b) Schematic of an integrated circuit providing four 2-input NAND gates

Figure A.23 A 14-pin integrated circuit package.

quickly developed a trend to provide logic gates in the form of standardized IC chips.
An IC chip is mounted inside a sealed protective package with a number of metallic pins
for external connections. Standard IC packages are available with different numbers
of pins. A simple package containing four NAND gates is shown in Figure A.23. The
four gates utilize common power supply and ground pins. Such ICs comprising only a
few logic gates are referred to as small-scale integrated (SSI) circuits.

The SSI circuits provide too little functionality for the physical space that they
require. Moreover, their performance is inferior because of the electrical characteristics
of the pins on an IC package. In general, it is necessary to use larger transistors to
provide the signals needed to drive external wires connected to pins. This increases
both propagation delay and power dissipation.

A CMOS NAND gate provided as part of an IC package like the one illustrated in
Figure A.23 may have a propagation delay of 5 nanoseconds. However, the delay of
a NAND circuit inside a large CMOS network implemented on a single chip may be
0.2 ns or less, depending on the manufacturing technology used.
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Much larger 1Cs are available today. and almost all logic circuits are realized with
such chips. A chip may implement a useful functional block such as an adder. multiplier.
register. encoder, or decoder. But it may also provide just an assortment of gates and
programmable interconnection switches that can be contigured by the designer to realize
avariety of arbitrary functions. In subsequent sections. we will discuss some commonly
used functional blocks as well as general user-programmable logic devices.

A.6 FLIP-FLOPS

The majority of applications of digital logic require the storage of information. For
example. a circuit that controls a combination lock must remember the sequence in
which the digits are dialed in order to determine whether to open the lock. Another
important example is the storage of programs and data in the memory of a digital
computer.

The basic electronic element for storing binary information is termed a larch.
Consider the two cross-coupled NOR gates in Figure A.24a. Let us examine this circuit.
starting with the situation in which R =1 and S = 0. Simple analysis shows that Q,, =0
and Qy, = . Under this condition. both inputs to gate G, are equal to 1. Thus, if R is
changed to 0. no change will take place at the outputs Q, and Q. If' S is set to | with
R cqual to 0. Q, and Q, will become [ and 0. respectively. and will remain in this
state after S is returned to 0. Hence. this logic circuit constitutes a memory element.
or a latch, that remembers which of the two inputs S and R was most recently equal to
L. A truth table for this latch is given in Figure A.245. Some typical waveforms that
characterize the latch are shown in Figure A.24¢. The arrows in Figure A.24¢ indicate
the causc-effect relationships among the signals. Note that when the R and S inputs
change from 1 to 0 at the same time. the resulting state is undefined. In practice. the
latch will assume one of its two stable states at random. The input valuation R =S = |
is not used in most applications of such latches.

Because of the nature of the operation of the preceding circuit, the S and R lines
are referred to as the ser and reser inputs. Since the valuation R =S = [ is normally
not used. the Q, and Q,, are usually represented by Q and Q, respectively. However.
should be regarded merely as a symbol representing the second output of the latch rather
than as the complement of Q. because the input valuation R =S = 1 yields Q =Q =0).

A.6.1 GATED LATCHES

Many applications require that the time at which a latch is set or reset be controlled
from an input other than R and S. termed a c/ock input. The resulting configuration
is called a gated SR larch. A logic circuit, truth table, characteristic waveforms. and
a graphical symbol for such a latch are given in Figure A.25. When the clock. Clk, is
equal to I, points S" and R’ follow the inputs S and R. respectively. On the other hand.
when Clk = 0, the S" and R points are equal to 0. and no change in the state of the
latch can take place.
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Figure A.24 A basic latch implemented with NOR gates.

So far we have used truth tables to describe the behavior of logic circuits. A truth
table gives the output of a network for various input valuations. Logic circuits whose
outputs are uniquely defined for each input valuation are referred to as combinational
circuits. This is the class of circuits discussed in Sections A.1 to A.4. When memory
elements are present, a different class of circuits is obtained. The output of such circuits
is a function not only of the present valuation of the input variables but also of their
previous behavior. An example of this is shown in Figure A.24. Circuits of this type
are called sequential circuits.

Because of the memory property. the truth table for the latch has to be modified to
show the effect of its present state. Figure A.25h describes the behavior of the gated
SR latch. where Q(r) denotes its present state. The transition to the next state. Q(r + ).
oceurs following a clock pulse. Note that for the input valuation S = R = 1. Q(r + 1)
is undefined for reasons discussed earlier.
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Figure A.25 Gated SR lotch.

The gated SR latch can be implemented using NAND gates as shown in Figure A.26.
Itis a useful exercise to show that this circuit is functionally equivalent to the circuit in
Figure A.25« (see Problem A.20).

A second type of gated latch, called the gared D latch, is shown in Figure A.27. In
this case, the two signals S and R are derived from a single input D. At a clock pulse.
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Figure A.27 Gated D latch.
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the Q outputis setto 1if D = 1 oris reset to 0 if D = 0. This means that the D flip-flop
samples the D input at the time the clock is high and stores that information until a
subsequent clock pulse arrives.

A.6.2 MASTER-SLAVE FLIP-FLOP

In the circuit of Figure A.25. we assumed that while C/k = 1. the inputs S and R do not
change. Inspection of the circuit reveals that the outputs will respond immediately to
any change in the S or R input during this time. Similarly. for the circuit of Figure A.27.
Q = Dwhile Clk = I. This is undesirable in many cases. particularly in circuits involving
counters and shift registers. which will be discussed later. In such circuits. immediate
propagation of logic conditions from the data inputs (R, S, and D) to the latch outputs
may lead to incorrect operation. The concept of a master-slave organization eliminates
this problem. Two gated D latches can be connected to form a master-slave D flip-flop.,
as shown in Figure A.28a. The first, referred to as the master. is connected to the input
line D when Clock = [. A [-to-0 transition of the clock isolates the master from the
input and transfers the contents of the master stage to the slave stage. We can see that
no direct path ever exists from the input D to the output Q.

It should be noted that while Clock = 1. the state of the master stage is immediately
affected by changes in the input D. The function of the slave stage is to hold the value
at the output of the flip-flop while the master stage is being set up to the next-state
value determined by the D input. The new state is transferred from the master to the
slave after the I-to-0 transition on Clock. At this point. the master stage is isolated from
the inputs so that further changes in the D input will not affect this transfer. Examples
of state transitions are shown in the form of a timing diagram in Figure A.28b.

The term flip-flop refers to a storage element that changes its output state at the
edge of a controlling clock signal. In the above master-slave D flip-flop. the observable
change takes place at the negative (1-t0-0) edge of the clock. The change is observable
when it reaches the Q terminal of the slave stage. Note that in the circuit in Figure A.28
we could have used the complement of Clock signal to control the master stage and
the uncomplemented Clock to control the slave stage. In that case. the changes in the
flip-flop output Q would occur at the positive edge of the clock.

A graphical symbol for a flip-flop is given in Figure A.28¢. We have used an
arrowhead. instead of the label CIk, to denote the clock input to the flip-flop. This is a
standard way of denoting that the positive edge of the clock causes changes in the state
of the flip-flop. In our figure it is the negative edge which causes changes. so a small
circle is used (in addition to the arrowhead) on the clock input.

A.6.3 EDGE TRIGGERING

A flip-flop is said to be edge triggered if data present at the input are transferred to
the output only at a transition in the clock signal. The input and output are isolated
from each other at all other times. The terms positive (leading) edge triggered and neg-
ative (trailing) edge triggered describe flip-flops in which data transfer takes place at the
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Figure A.28 Master-slave D flip-flop.

0-to-1 and the 1-to-0 clock transitions. respectively. For proper operation. edge-triggered
flip-flops require the triggering edge of the clock pulse to be well defined and to have
a very short transition time. The master-slave flip-flop in Figure A.28 is negative-edge
triggered.

A different implementation for a negative edge-triggered D flip-flop is given in
Figure A.29a. Let us consider the operation of this flip-flop. If Clk = 1. the outputs
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Figure A.29 A negative edge-triggered D flip-flop.

of gates 2 and 3 are both 0. Therefore, the flip-flop outputs Q and Q maintain the
current state of the flip-flop. It is easy to verify that during this period, points P3 and P4
immediately respond to changes at D. Point P3 is kept equal to D, and P4 is maintained
equal to D. When Clk drops to 0, these values are transmitted to P1 and P2 by gates
2 and 3. respectively. Thus, the output latch. consisting of gates 5 and 6. acquires the
new state to be stored.
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We now verity that while Clk = 0. further changes at D do not change points PI
and P2. Consider two cases. First, suppose D = 0 at the negative edge of Clk. The
I at P2 maintains an input of | at each of the gates 2 and 4. holding P1 and P2 at 0
and 1. respectively, independent of further changes in D. Second. suppose D =1 at the
negative edge of Clk. The | at P1 means that further changes at D cannot affect the
output of gate 1. which is maintained at 0.

When Clk goes to 1 at the start of the next clock pulse. points P1 and P2 are again
forced to 0, isolating the output from the remainder of the circuit. Points P3 and P4
then follow changes at D, as we have previously described.

An example of the operation of this type of D flip-flop is shown in Figure A.295.
The state acquired by the flip-flop upon the 1 to O transition of Clk is equal to the value
on the D input immediately preceding this transition. However, there is a critical time
period T¢g around the negative edge of Cl/k during which the value on D should not
change. This region is split into two parts, the setup time before the clock edge and the
hold time after the clock edge, as shown in the figure. The timing diagram shows that
the output Q changes slightly after the negative edge of the clock. This is the effect of
the propagation delay through the NOR gates.

A.6.4 T FLip-FLOP

The most commonly used flip-flops are the D flip-flops because they are useful for
temporary storage of data. However, there are applications for which other types of
flip-flops are convenient. Counter circuits, discussed in Section A.8. are implemented
efficiently using T flip-flops. A T flip-flop changes its state every clock cycle if its input
T is equal to 1. We say that 1t “toggles™ its state.

Figure A.30 presents the T flip-flop. Its circuit is derived from a D flip-flop as shown
in Figure A.30«. Its truth table, graphical symbol, and a timing diagram example are
also given in the figure. Note that we have assumed a positive edge-triggered flip-flop.

A.6.5 JK FLip-FLOP

Another flip-flop that is sometimes encountered in practice is the JK flip-flop, which
combines the behaviors of SR and T flip-flops. It is presented in Figure A.31. Its
operation is defined by the truth table in Figure A.31h. The first three entries in this
table define the same behavior as those in Figure A.25b (when C/k = 1), so that J and
K correspond to S and R. For the input valuation ] = K = 1. the next state is defined
as the complement of the present state of the flip-flop. That is, when J = K = 1. the
flip-flop functions as a roggle, reversing its present state.

A JK flip-flop can be implemented using a D flip-flop connected such that

D =JQ+KQ

The corresponding circuit is shown in Figure A.3la.

The JK flip-flop is versatile. It can be used to store data. just like the D flip-flop. It
can also be used to build counters. because it behaves like the T flip-flop if its J and K
input terminals are connected together.
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(d) Timing diagram

Figure A.30 T flip-flop.

A.6.6 FLIP-FLOPS WITH PRESET AND CLEAR

The state of a flip-flop is determined by its present state and the logic values on its input
terminals. Sometimes it is desirable to force a flip-flop into a particular state, either ()
or 1. regardless of its present state and the values of the normal inputs. For example.
when a computer is powered on, it is necessary to place all flip-flops into a known state.
Usually. this means resetting their outputs to state 0. In some cases it is desirable to
preset some flip-flops into state 1.
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Figure A.31 K flip-flop.

Figure A.32 illustrates how preset and clear control inputs can be added to a
master-slave D flip-flop. to force the flip-flop into state | or 0 independent of the D
input and the clock. These inputs are active low. as indicated by the overbars and

flop is controlled by the clock and D input in the normal way. When Preset = 0. the
flip-flop is forced to the | state. and when Clear = 0. the flip-flop is forced to the 0
state. The preset and clear controls are also often incorporated in the other flip-flop
types.

A.7 REGISTERS AND SHIFT REGISTERS

An individual flip-flop can be used to store one bit. However. in machines in which data
are handled in words consisting of many bits (perhaps as many as 64), it is convenient to
arrange a number of flip-flops into a common structure called a regisrer. The operation
of all flip-flops in a register is synchronized by a common clock. Thus. data are written
(loaded) into or read from all flip-flops at the same time.
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Figure A.32 Masterslave D flipflop with Preset and Clear.
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Figure A.33 A simple shift register.

Processing of digital data often requires the capability to shift and rotate the data.
so it is necessary to provide the hardware with this facility. A simple mechanism for
realizing both operations is a register whose contents may be shifted to the right or left
one bit position at a time. As an example. consider the 4-bit shift register in Figure A.33.
It consists of D flip-flops connected so that each clock pulse will cause the transfer of
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the contents (state) of F; to F; |, effecting a “right shift.” Data are shifted serially into
and out of the register. A rotation of the data can be implemented by connecting Out
to In.

Proper operation of a shift register requires that its contents be shifted exactly one
position for each clock pulse. This places a constraint on the type of storage elements
that can be used. Gated latches, depicted in Figure A.27, are not suitable for this purpose.
While the clock is high, the value on D input quickly propagates to the output. From
there, the value propagates through the next gated latch in the same manner. Hence,
there is no control over the number of shifts that will take place during a single clock
pulse. This number depends on the propagation delays of the gated latches and the
duration of the clock pulse. The solution to the problem is to use either the master-slave
or the edge-triggered flip-flops.

A particularly useful form of a shift register is one that can be loaded and read
in parallel. This can be accomplished with some additional gating as illustrated in
Figure A.34, which shows a 4-bit register constructed with D flip-flops. The register
can be loaded either serially or in parallel. When the register is clocked, a shift takes
place if Shift/Load = 0; otherwise, a parallel load is performed.

Parallel output

alapa

Serial

hput  Shift/Load

v Clock
Parallel input

Figure A.34 Parallelaccess shift register.
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A.8 COUNTERS

In the preceding section. we discussed the applicability of flip-flops in the construction
of shift registers. They are equally useful in the implementation of counter circuits.
It is hardly necessary to justify the need for counters in digital machines. In addition
to being hardware mechanisms for realizing ordinary counting functions, counters are
also used to generate control and timing signals. A counter driven by a high-frequency
clock can be used to produce signals whose frequencies are submultiples of the original
clock frequency. In such applications a counter is said to be functioning as a scaler.
A simple three-stage (or 3-bit) counter constructed with T flip-flops is shown in
Figure A.35. Recall that when the T input is equal to 1. the flip-flop acts as a toggle.
that is. its state changes with each successive clock pulse. Thus. two clock pulses will
cause Qq to change from the | state to the 0 state and back to the | state or from 0 to
1 to 0. This means that the output waveform of Qy has half the frequency of the clock.
Similarly, because the second flip-flop is driven by Q. the waveform at Q; has half the
frequency of Qq. or one-fourth the frequency of the clock. Note that we have assumed
that the positive edge of the clock input to each tlip-flop triggers the change of its state.

L] TLQ
Clock —> Q > Q t > Q

Q() Q] Q’

(a) Circuit

Clock

Qp

Q

Q‘\

Count 0 |

(83
>
i
s
o
-

0

(b) Timing diagram

Figure A.35 A 3-bit up-counter.
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Such a counter is often called a ripple counter because the effect of an input clock
pulse ripples through the counter. For example. the positive edge of pulse 4 will change
the state of Qg from | to 0. This change in Qg will then force Q, trom 1 to 0. which
in turn forces Q- from O to I. If each flip-flop introduces some delay A, then the delay
in setting Q> is 3A. Such delays can be a problem when very fast operation of counter
circuits is required. In many applications, however. these delays are small in comparison
with the clock period and can be neglected.

With the addition of some extra logic gates. it is possible to construct a “syn-
chronous™ counter in which each stage is under the control of the common clock so
that all flip-flops can change their states simultaneously. Such counters are capable of
operation at higher speed because the total propagation delay is reduced considerably.
In contrast, the counter in Figure A.35 is said to be “asynchronous.”

A.9 DECODERS

Much of the information in computers is handled in a highly encoded form. In an
instruction, an n-bit field may be used to denote 1 out of 2 possible choices for the
action to be taken. To perform the desired action, the encoded instruction must first
be decoded. A circuit capable of accepting an n-variable input and generating the
corresponding output signal on one out of 2" output lines is called a decoder. A simple
example of a two-input to four-output decoder is given in Figure A.36. One of the four
output lines is selected by the inputs v, and x». as indicated in the figure. The selected
output has the logic value 1, and the remaining outputs have the value 0.

Other useful types of decoders exist. For example. using information in BCD form
often requires decoding circuits in which a four-variable BCD input is used to select

Active
output

0000

Figure A.36 A two-input to four-output decoder.
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0 0000 | T O O A O
1 0001 0110000
2 0010 101101
3 0011 1111001
4 0100 0110011
5 0101 1011011
6 0110 FTor 1111
7 0111 1110000
8 1000 | T O O I
9 1001 | T O R O 2 B

Figure A.37 A BCD to seven-segment display decoder.
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I out of 10 possible outputs. As another specific example, let us consider a decoder
suitable for driving a seven-segment display. Figure A.37 shows the structure of a seven-
segment element used for display purposes. We can easily see that any decimal number
from zero to nine can be displayed with this element simply by turning some segments
on (light) while leaving others oft (dark). The necessary functions are indicated in the
table. They can be realized using the decoding circuit shown in the figure. Note that
the circuit is constructed with NAND gates. We encourage the reader to verify that the
circuit implements the required functions.

A.10 MULTIPLEXERS

In the preceding section. we saw that decoders select one output line on the basis of
input signals. The selected output line has logic value 1, while the other outputs have
the value 0. Another class of very useful selector circuits exists in which any one of
n data inputs can be selected to appear as the output. The choice is governed by a set
of “select” inputs. Such circuits are called multiplexers. An example of a multiplexer
circuit is shown in Figure A.38. It has two select inputs, u; and w-. Their four possible
valuations are used to select one of four inputs, xj..x2. vz, Or vy, to appear as the
output . A simple logic circuit that can implement the required operation is also given.
Obviously, the same structure can be used to realize larger multiplexers. in which &
select inputs are used to connect one of the 2* data inputs to the output.

The obvious application of multiplexers is in the gating of data that may come from
a number of ditferent sources. For example. loading a 16-bit data register from one of
four distinct sources can be accomplished with sixteen 4-input multiplexers.

Multiplexers are also very useful as basic elements for implementing logic func-
tions. Consider a function f defined by the truth table of Figure A.39. It can be repre-
sented as shown in the figure by factoring out the variables x; and xv». Note that for each
valuation of x| and v, the function f corresponds to one of four terms: 0. 1. x5, or X3.
This suggests the possibility of using a four-input multiplexer circuit, in which x; and x>
are the two select inputs that choose one of the four data inputs. Then. if the data inputs
are connected to 0, 1, x3. or ¥3 as required by the truth table. the output of the multiplexer
will correspond to the function f. The approach is completely general. Any function
of three variables can be realized with a single four-input multiplexer. Similarly. any
function of four variables can be implemented with an eight-input multiplexer. and
SO on.

A.11 PROGRAMMABLE LOGIC DEVICES (PLDS)

Sections A.2 and A.3 showed how a given switching function can be represented in
terms of sum-of-products expressions and implemented by corresponding AND-OR
gate networks. Section A.10 showed how multiplexers can be used to realize switching
functions. In this section we will consider another class of circuits that can be used for
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Figure A.38 A four-input multiplexer.

the same purpose. These circuits consist of arrays of switching elements that can be
programmed to allow implementation of sum-of-products expressions. They are called
programmable logic devices (PLDs).

Figure A.40 shows the block diagram of a PLD. It has » input variables (x;. . ... X,)
and m output functions ( fi. ..., f,). Each function f; is realized as a sum of product
terms that involve the input variables. The variables x;....,. v, are presented in true
and complemented form to the AND array. where up to k product terms are formed.
These are then gated into the OR array, where the output functions are formed. Two

commonly used types of PLDs are described in the remainder of this section.
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Figure A.39 Multiplexer implementation of a
logic function.
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Figure A.40 A block diagram for a PLD.

A.11.1 PROGRAMMABLE LOGIC ARRAY (PLA)

A circuit in which connections to both the AND and the OR arrays can be programmed
is called a progranmmable logic array (PLA). Figure A.41 illusurates the functional
structure of a PLA using a simple example. The programmable connections must be
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Figure A.41 Functional structure of a PLA.

such that if no connection is made to a given input of an AND gate, the input behaves
as if a fogic value of 1 is driving it (that is. this input does not contribute to the product
term realized by this gate). Similarly. if no connection is made to a given input of an
OR gate. this input must have no effect on the output of the gate (that is, the input must
behave as if a logic value of O is driving it).

Programmed connections may be realized in different ways. In one method. pro-
gramming consists of blowing fuses in positions where connections are not required.
This is done by applying higher-than-normal current. Another possibility is to use tran-
sistor switches controlled by erasable memory elements (see Section 5.3 on EPROM
memory circuits) to provide the connections as desired. This allows the PLA to be
reprogrammable.

The simple PLA in Figure A.41 can generate up to four product terms from three
input variables. Two output functions may be implemented using these product terms.
Some of the product terms may be used in more than one output function. The PLA is
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Figure A.42 A simplified sketch of the PLA in Figure A.41.

configured to realize the following two functions:
S = x4 0 4 g
Jr = x4 xxs + XN

Only four product terms are needed. because two terms can be shared by both functions.
Practical PLAs come in much larger sizes.

Although Figure A.41 depicts clearly the basic functionality of a PLA. this style
of presentation is awkward for describing a larger PLA. It has become customary in
technical literature to represent the product and sum terms by means of corresponding
gate symbols that have only one symbolic input line. An x is placed on this line to
represent each programmed connection. This drawing convention is used in Figure A .42
torepresent the PLA example from Figure A.41. In general. a programmable connection
can be made at any crossing of a vertical line and a horizontal line in the diagram, to
implement arbitrary functions of input variables.

The PLA structure is very efficient in terms of the area needed for its implemen-
tation on an integrated circuit chip. For this reason, such structures are often used for
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implementing control circuits in processor chips. In this case. the desired connections
are put in place as the last step in the manufacturing process. rather than making them
programmable after the chip has been fabricated.

A.11.2 PROGRAMMABLE ARRAY LOGIC (PAL)

In a PLA. the inputs to both the AND array and the OR array are programmable. A
similar device. in which the inputs to the AND array are programmable but the con-
nections to the OR gates are fixed. has found great popularity in practical applications.
Such devices are known as programmable array logic (PAL) chips.

Figure A.43 shows a simple example of a PAL that can implement two functions.
The number of AND gates connected to each OR gate in a PAL determines the maximum
number of product terms that can be realized in a sum-of-products representation of a

% — %
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RRRK]

Fi= apaag
Sa= X0+

Figure A.43 An example of a PAL.
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Figure A.44 An example of the output of a PAL element.

given function. The AND gates are permanently connected to specitic OR gates, which
means that a particular product term cannot be shared among output functions.

PAL chips are available in various configurations. A substantial number of input
variables and output functions can be provided. allowing large functions to be realized.
The versatility of a PAL may be enhanced further by including flip-flops in the outputs
from the OR gates. Such PAL chips enable the designer ot a digital system to implement
a relatively complex logic network using a single chip.

Figure A.44 indicates the kind of flexibility that can be provided. A multiplexer
is used to choose whether a true, complemented. or stored (from the previous clock
cycle)y value of fis to be presented at the output pin of the PAL chip. The select inputs
to the multiplexer can be set as programmable connections. The output pin is driven by
a tri-state driver under control of the Qutput-enable signal. Note that the signal from
the output of the multiplexer is also made available as an internal input that can be used
in product terms that feed other OR gates in the PAL. This facilitates the realization of
circuits that have several levels (stages) of logic gates.

A.11.3 COMPLEX PROGRAMMABLE LOGIC DEVICES (CPLDS)

PALs are useful devices, but their relatively small size means that many such chips
may be needed to implement a typical digital system. Larger devices of a similar type
have been developed to deal with this issue. They are known as complex programmable
logic devices (CPLDs). They comprise two or more PAL-like blocks and programmable
interconnection wires. Figure A.45 indicates the structure of a CPLD chip. Each PAL-
like block is connected to a number of input/output pins. Connections between PAL-like
blocks are established by programming the switches associated with the interconnection
wires.
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Figure A.45 Structure of a complex programmable logic
device (CPLD).

The interconnection resource consists of horizontal and vertical wires. Each hori-
zontal wire can be connected to some of the vertical wires by programming the corre-
sponding switches. It is impractical to provide full connectivity, where each horizontal
wire can be connected to any of the vertical wires, because the number of required
switches would be large. Satisfactory connectivity can be achieved with a much smaller
number of switches.

Commercial CPLDs come in different sizes. ranging from 2 to more than 100 PAL-
like blocks. A CPLD chip is programmed by loading the programming information into
it via a JTAG port. This is a 4-pin port that conforms to an IEEE standard developed
by the Joint Test Action Group.

A.12 FIELD-PROGRAMMABLE GATE ARRAYS

PAL chips provide general functionality but are somewhat limited in size because
an output pin is provided for each sum-of-products circuit. A more powertul class of
programmable devices has been developed to overcome these size limitations. They are
known as field-programmable gate arravs (FPGAs). Figure A.46 shows a conceptual
block diagram of an FPGA. It consists of an array of logic blocks (indicated as black
boxes) that can be connected by general interconnection resources. The interconnect,
shown in blue. consists of segments of wire and programmable switches. The switches
are used to connect the logic blocks to the wire segments and to establish connections
between different wire segments as desired. This allows a large degree of routing
flexibility on the chip. Input and output buffers are provided for access to the pins of
the chip.
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Figure A.46 A conceptual block diagram of an FPGA.

There are a variety of designs for the logic blocks and the interconnect structure. A
logic block may be just a simple multiplexer-based circuit capable of implementing logic
functions as discussed in Section A.10. Another popular design uses a simple lookup
table as a logic block. For example. a four-input lookup table can be implemented
in the form of a 16-bit memory circuit in which the truth table of a logic function is
stored. Each memory bit corresponds to one combination of the input variables. Such a
lookup table can be programmed to implement any function of four variables. The logic
blocks may contain flip-flops to provide additional flexibility of the type encountered
in Figure A.44.

In addition to the logic blocks, many FPGA chips include a substantial number of

memory cells (not shown in Figure A.46), which may be used to implement structures
such as first-in first-out (FIFO) queues or RAM and ROM components in system-on-
a-chip applications, which are discussed in Chapter 9.

From the user’s point of view, there are two major differences between FPGAs and
CPLDs. The FPGA chips have much greater functionality and can be used to implement

rather large logic networks. An FPGA chip may implement a circuit that requires over

amillion logic gates. The second important consideration is the speed of these devices.
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Since programmabie switches are used to establish all connections in the interconnect.
an FPGA will inevitably have significantly longer propagation delays compared with
a less flexible device such as a PAL or a CPLD.

The growing popularity of FPGAs is due to the fact that they allow a designer
to implement very complex logic networks on a single chip without having to design
and fabricate a custom VLSI chip, which is both expensive and time-consuming. Using
CAD tools. itis possible to generate an FPGA design in a matter of days. rather than the
months needed to produce a custom-designed VLSI chip. The FPGA implementations
are also attractive in terms of cost. Even the largest FPGAs cost only a few hundred
dollars. and the cost associated with the design time is very small compared to the cost
of designing a custom chip.

An introductory discussion of programmable logic devices can be found in many
modern books on logic design. For a more extensive treatiment of these devices, the
reader may consult other books [1, 3-6] and manufacturers’ literature.

A.13 SEQUENTIAL CIRCUITS

A combinational circuit is one whose output is determined entirely by its present inputs.
Examples of such circuits are the decoders and multiplexers presented in Sections A9
and A.10. A differentclass of circuits are those whose outputs depend on both the present
inputs and on the sequence of previous inputs. They are called sequential cirenirs. Such
circuits can be in different states. depending on what the sequence of inputs has been
up to a given time. The state of a circuit determines the behavior when various input
patterns are applied to the circuit. We encountered two specitic forms of such circuits
in Sections A.7 and A.8. called shift registers and counters. In this section. we will
introduce more examples of sequential circuits. provide a general form for them. and
give a brief introduction to the design of these circuits.

A.13.1 AN EXAMPLE OF AN UP/DOWN COUNTER

Figure A.35 shows the configuration of an up counter. implemented with three T flip-
flops. which counts in the sequence 0. 1.2,....7,0... .. A similar circuit can be used
to count in the down direction, thatis. 0. 7. 6. .. .. 1. 0....(see Problem A.26). These
simple circuits are made possible by the toggle feature of T flip-fiops.

We now consider the possibility of implementing such counters with D flip-fops.
As aspecific example, we will design a counter that counts either up or down. depending
on the value of an external control input. To keep the example small, fet us restrict the
size to a mod-4 counter. which requires only two state bits to represent the four possible
count values. We will show how this counter can be designed using general techniques
for the synthesis ot sequential circuits. The desired circuit will count up if an input
signal x is equal to 0 and down if x is 1. The count will change on the negative edge
of the clock signal. Let us assume that we are particularly interested in the state when
the count is equal to 2. Thus. an output signal. z. should be asserted when the count is
equal to 2: otherwise - = 0.
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The desired counter can be implemented as a sequential circuit. In order to de-
termine what the new count will be when a clock pulse is applied. it is sufficient to
know the value of v and the present count. It is not necessary to know what the actual
sequence of previous input values has been. as long as we know the present count that
has been reached. This count value is said to determine the present state of the circuit.
which is all that the circuit remembers about previous input values. If the present count
is 2 and v = 0. the next count will be 3. It makes no difference whether the count of 2
was reached counting down from 3 or up from 1.

Before we show a circuit implementation. let us depict the desired behavior of the
counter by means of a state diagram. The counter has four distinct states: SO, S1.S2. and
S3. A state diagram is a graph in which states are represented as circles (sometimes
called nodes). Transitions between states are indicated by labeled arrows. The label
associated with an arrow specifies the value of the input v that will cause this particular
transition to occur and the value of the output produced as a result. Figure A.47 shows
the state diagram of our up/down counter. For example. the arrow emanating from state
S1 (count = 1) for an input .x = 0 points to state S2. thus specifying the transition
to state S2. Tt also indicates that the output = must be equal to 0 while the circuit is in
state ST and the value of x is 0. An arrow from S2 to S3 specifies that when v = 0 the
next clock pulse will cause a transition from S2 to S3, and that the output : should be
I while the circuit is in state S2.

Note that the state diagram describes the functional behavior of the counter without
any reference to how itis implemented. Figure A .47 can be used to describe an electronic
digital circuit. a mechanical counter, or a computer program that behaves in this way.
Such diagrams are a powerful means of describing any system that exhibits sequential
behavior.

v=0/2=0
/

y=1/:=0

\= ] /,/::()
r=0/:=0 v=0/2=0
y=1/z:=1

y=1/:=0
—/

y=0/z=1

Figure A.47 State diagram of a mod-4 up/down counter that
detects the count of 2.
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Present Next state Output
state
x=0 x=1 x=0 =1
S0 S1 S3 0 0
S S2 S0 0 0
82 S3 S I |
S3 SO S2 0 0

Figure A.48 State table for the example of the
up/down counter.

A different way of presenting the information in a state diagram is to use a stafe
table. Figure A.48 gives the state table for the example in Figure A.47. The table
indicates transitions from all present states to the next states, as required by the applied
input x. The output signal, z, is determined by the present state of the circuit and the
value of the applied input, x.

Having specified the desired up/down counter in general terms, we will now con-
sider its physical realization. Two bits are needed to encode the four states that indicate
the count. Let these bits be v, (high-order) and v, (low-order). The states of the counter
are determined by the values of v, and v, which we will write in the form y»y,. We
will assign values to v,y for each of the four states as follows: SO = 00, S1 = Ol.
S2 = 10, and S3 =: 11. We have chosen the assignment such that the binary number
va2 vy represents the count in an obvious way. The variables y» and v, are called the stare
variables of the sequential circuit. Using this state assignment, the state table for our
example is as shown in Figure A.49. Note that we are using the variables Yy and Y5 to
denote the next state in the same manner as y; and y-.

It is important to note that we could have chosen a different assignment of y» v,
values to the varicus states. For example. a possible state assignment is: SO = 10.
S1 = 11, S2 = 01, and S3 = 00. For a counter circuit, this assignment is less intui-
tive than the one in Figure A.49, but the resultant circuit will work properly. Differ-
ent state assignments usually lead to different costs in implementing the circuit (see
Problem A.32).

Our intention in this example is to use D flip-flops to store the values of the two
state variables between successive clock pulses. The output, Q, of a flip-flop is the
present-state variable v;. and the input. D, is the next-state variable Y;. Note that Y, is
a function of v,. v;. and x, as indicated in Figure A.49. From the figure, we see that

Yy = Vo)X 4 3oV ¥+ Vo v 4 vy
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Present Next state Output -
state
v=0 v=1 =0 =
Yoy Y Y, Yy ¥,
00 0 1 I 0 0
01 10 00 0 0
Lo Pl 01 ! |
(I 0O 0 I 0O 0 0

Figure A.49 State assignment for the example in
Figure A.48.

x __.\ )
A\A] l—‘ YI
~\.| \“ Y
- 4
0O D
Q <Jo—
Q D
QO <o—4+———— Clock

Figure A.50 Implementation of the up/down counter.

The output z is determined as

I= )

These expressions lead to the circuit shown in Figure A.50.
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A.13.2 TIMING DIAGRAMS

To fully understand the operation of the counter circuit. it is useful to consider its timing
diagram. Figure A.51 gives an example of a possible sequence of events. It assumes that
state transitions (changes in flip-flop values) occur on the negative edge of the clock
and that the counter starts in state SO. Since v = 0. the counter advances to state S| at
fy. then to S2 at 7y and to S3 at 1>. The output changes from 0 to I when the counter
enters state S2. 1t goes back to 0 when state S3 is reached. At the end of S3. at 13. the
counter goes to SO. We have assumed that at this time the input v changes to 1. causing
the counter to count in the down sequence. When the count again reaches S2. at ¢s. the
output - goes to 1.

Note that all signal changes occur just after the negative edge of the clock. and
stgnals do not change again until the negative edge of the next clock pulse. The delay
from the clock edge to the time at which variables v; change is the propagation defay
of the flip-flops used to implement the counter circuit. It is important to note that the
input v is also assumed to be controlled by the same clock. and it changes only near the
beginning of a clock period. These are essential features of circuits where all changes
are controlled by a clock. Such circuits are called synchronous sequential circuits.

Another important observation concerns the relationship between the tabels used
in the state diagram in Figure A.47 and the timing diagram. For example. consider the
clock period between 11 and £>. During this clock period. the machine is in state S2 and
the input value is v = (). This situation is described in the state diagram by the arrow

1y 7 15 13 1y !5 IS &

Clock

State: SO Si S2 S3 SO S3 S2 Sl SO

Figure A.51 Timing diagram for the circuit in Figure A.50.
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emanating from state S2 labeled x = (). Since this arrow points to state S3. the uming
diagram shows v»> and v, changing to the values corresponding to state S3 at the next
clock edge. 1>, The output value associated with the arrow gives the value of z while
the counter is in state S2.

A.13.3 THE FINITE STATE MACHINE MODEL

The specitic example of the up/down counter implemented as a synchronous sequential
circuit with flip-flops and combinational logic gates. as shown in Figure A.50. is casily
generalized to the formal finite state machine model given in Figure A 52 In this model.
the time delay through the delay elements is equal to the duration of the clock cycle.
This is the time that elapses between changes in ¥; and the corresponding changes in v;.
The model assumes that the combinational logic block has no delay : hence, the outputs
o Yy and Y are instantaneous functions of the inputs x. vy and v>. In an actual circuit.
some delay will be introduced by the circuit elements, as shown in Figure A.51. The
circuit will work properly if the delay through the combinational logic block is short
with respect to the clock cycle. The next-state outputs ¥, must be available in time to
cause the flip-flops to change to the desired next state at the end of the clock cycle.
Also. while the output - may not be at the desired value during all of the clock cycle.
it must reach this value well before the end of the cycle.

Inputs to the combinational logic block consist of the flip-flop outputs. v;. which
represent the present state, and the external input, x. The outputs of the block are the

)
ln]:ul ( utput
A . Y,
Combinational
y logic

Vs ¥

Present Next

state state

AA

A‘.

Delay clements
(flip-flops)

Figure A.52 A formal model of a finite state machine.
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inputs to the flip-flops. which we have called Y;. and the external output. z. When the
active clock edge arrives marking the end of the present clock cycle. the values on
the Y, lines are loaded into the flip-flops. They become the next set of values of the
state variables. v;. Since these signals are connected to the input of the combinational
block. they. along with the next value of the external input x. will produce new = and
Y; values. A clock cycle later, the new Y; values are transferred to v;. and the process
repeats. In other words. the flip-flops constitute a feedback path from the output to the
input of the combinational block. introducing a delay of one clock period.

Although we have shown only one external input. one external output, and two
state variables in Figure A.52. it is clear that multiple versions are possible for any of
the three types of variables.

A.13.4 SYNTHESIS OF FINITE STATE MACHINES

Let us summarize how to design a synchronous sequential circuit having the general
organization in Figure A.52. based on a state diagram like that in Figure A.47. The
design. or synthesis. process involves the following steps:

. Develop an appropriate state diagram or state table.

2. Determine the number of flip-flops needed. and choose a suitable type of flip-flop.

3. Determine the values to be stored in these flip-flops for each state in the state
diagram. This is referred to as state assignment.

4. Develop the state-assigned state table.

5. Derive a truth table for the combinational logic block.

6. Find a suitable circuit implementation for the combinational logic block.

Example

As a turther example of a finite state machine that has both inputs and outputs. con-
sider a coin-operated vending machine. For simplicity. let us assume that the machine
accepts only quarters and dimes. The quarters or dimes are applied as inputs until a total
of 30 cents or more is deposited. When this total is reached. an output (merchandise) is
provided. No change is provided if more than 30 cents is deposited. Let binary inputs
X1 and vy represent coins being deposited. such that vy = 1 or x» = | if a quarter or a
dime is deposited. respectively. Otherwise. these inputs are equal to 0. Only one coin
is deposited at a time. so that input combination xj.v> = 11 never occurs. Also. let a
binary output = represent merchandise provided by the machine. such that - = 0 for no
merchandise and - = 1 for merchandise provided.

The first task in designing a logic circuit for the vending machine is to draw a state
diagram or a state wable. It is best to give a word description of each state needed and
then decide later how many flip-flops will be needed to represent the required number
of states. The states represent the total amount of money deposited at any point in the
process. Based on the fact that dimes or quarters can be deposited in any order until the
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00/0

ATRE 0/ -=0

00/0

10/0

00/0
00/0

x; =1 ~ quarter deposited
v, =1 ~ dime deposited
-=1 ~ dispense merchandise

(i.c.. a total of 30 cents deposited)

Input combination .v,.v5 = 11 cannot occur

Figure A.53 State diagram for the vending machine example.

total is equal to or greater than 30 cents. the states needed are:

SO = nothing deposited (the “start™ state)
S1 =10 cents
S2 =20 cents
S3 =25 cents

‘e do not need any more states because when the present state is either S2 or S3. either
a dime or a quarter will suffice as the present input to generate the = = | output and
move to state SO to start again.

A state diagram description of the desired behavior for the vending machine is
given in Figure A.53. Note that the input v, x> = 11 does not appear because both a
quarter and a dime cannot be deposited at the same time. Also notice that each state has
an arrow looping back to itself labeled 00/0. This indicates that if no coins are being
deposited during a clock cycle. the circuit stays in its present state.

Only four states are needed for this machine. This will require two flip-flops. If

we label them v and v;. and assign their values to represent the states as SO = 00.
St =01.S2 = 10.and S3 = 1. Figure A.54 shows the resultant assigned state table.
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Prosent Next state Output =
state
A, =00) vy =01y, = 10 v, = Ty v, =00] v, =01 vy, = 10 Y, = 1l

Va¥y Y Y b Y Yo r
SO 00 00 01 11 - 0 0 0 -
St 01 01 o 00 - 0 0 | -
S2 I o 10 00 00 - 0 | 1 -
S3 [ I 00 00 - 0 | 1 -

Figure A.54 Assigned state table for the vending machine example.

We have used dashes in the table to indicate that the input combination of x;x» = 11
does not appear. These entries are don’t-care conditions. which we can take advantage
of in the design of the combinational logic block, which will be discussed next.

This completes the first four steps in the synthesis procedure. We now go to step 5.
The assigned state table in Figure A.54 leads directly to the truth table in Figure A.55,
which specifies the functions of the combinational logic block. From the table, it is easy
to derive the following expressions that give the implementation of the logic block:

Y- = T]Tg)‘g + A\'g._\":.\‘| + ,\'|A\.‘3.‘\_",
Yi =00y + 00,y +x0)
=g ) gy

Observe that the logic terms ¥, 35, ¥, v>. and (x) + x>) appear in more than one of the
expressions. This leads to a cost saving in the implementation of the block.

Sequential circuits can easily be implemented with PALs, CPLDs and FPGAs
because these devices contain flip-flops as well as combinational logic gates. Modern
computer-aided design tools can be used to synthesize sequential circuits directly from
a specification given in terms of a state diagram.

Note that the next-state and output entries in Figure A.54 are the same for states
S2 and S3 for all input combinations where a change of state occurs. This implies that
two different states are not really needed to represent the totals 20 cents and 25 cents.
One state would be sufficient. because from either of these total deposits. the next coin
deposited will cause merchandise to be provided (- = 1) and will cause a return to the
starting state SO. Thus, states S2 and S3 are equivalent and can be replaced by a single
state. This means that only three states are needed to implement the machine. Two flip-
flops are still required. However, in more general situations. a reduction in the number
of states through state equivalences often leads to fewer flip-flops and simpler circuits.

Another economy that can be achieved in implementing sequential circuits is in the
combinational logic required. Different state assignments will lead to different logic
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Yoo LA D ST
0 0 0 0 0 0 0
0 0 0 1 0 1 0
0 0 1 0 1 0 0
0 0 | } 1 I 0

0 | | | 0 0 |
| 0 0 0 | I 0
| 0 0 | 0 0 |

1 | 0 0 d d d

1 | 0 | d d d

Figure A.55 Combinational logic
specification for the
vending machine circuit.

specifications. some of which may require fewer gates than others. We will not develop
these ideas further. but the reader should appreciate that there are many interesting
aspects to the economical design and implementation of sequential circuits.

Finally, we should note that other types of flip-flops can be used to represent
state variables. We have used the D flip-flops here to keep the presentation as simple
as possible. By using other, more flexible types. such as JK flip-flops. the required
combinational logic can sometimes be reduced. See Problems A.35 and A.36 for an
exploration of this possibility.

The preceding introduction to sequential circuits is based on the type of circuits that
operate under the control of a clock. It is also possible to implement sequential circuits
without using a clock. Such circuits are called asynchronous sequential circuits. Their
design is not as straightforward as that of the synchronous sequential circuits. For a
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complete treatment of both types of sequential circuits. consult one of many books that
specialize in logic design [1. 3. 7-11].

A.14 CONCLUDING REMARKS

The main purpose of this appendix is to acquaint the reader with the basic concepts in
logic design and to provide an indication of the circuit configurations commonly used
in the construction of computer systems. Familiarity with this material will lead to o
much better understanding of the architectural concepts discussed in the main chapters
of the book. As we have said in several places. the detailed design of logic networks
is done with the help of CAD tools. These tools take care of many details and can be
used very etfectively by a knowledgeable designer.

IC technology and CAD tools have revolutionized logic design. A variety of IC
components are commercially available at ever-decreasing costs. and new develop-
ments and technological improvements are constantly occurring. In this appendix.
we introduced some of the basic components that are useful in the design of digital
systems.

From the designer’s point of view. the important parameters are the cost and speed
of the resultant circuits. Both of these measures are improved by making the number of
IC packages used as low as possible. This can be achieved if large chips are used. which
are capable of implementing complex logic networks on a single chip. In particular. the
CPLD and FPGA devices offer effective solutions in many applications.

Two other design objectives are becoming increasingly important. The ability t¢
casily test the resultant circuits simplifies both the task of proving that newly produced
equipment works correctly and the task of repairing it when it fails. Furthermore. it is
often desirable to increase the reliability of a system with the help of additional. redun-
dant logic circuits (for example. by duplicating some parts). Both of these objectives
are likely to lead to increased component cost. It is the designer’s job to arrive at
satisfactory trade-off between these considerations. A number of books are available
that deal with the subject of testing and fault tolerance [1. 12-17].

PROBLEMS

Implement  the COINCIDENCE function in sum-of-products form. where
COINCIDENCE = XOR.

Prove the following identities by using algebraic manipulation and also by using truth
tables.

(@) a ®b @ ¢ = abc + abe + dbc + abe

(hy x +wx =x +uw

(¢) .\']Tg + j\:v:.\'} -+ .\’3:{’] = .\'|T3 -+ .\".g.T|
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Derive minimal sum-of-products forms for the four 3-variable functions fy. f>. f3.and
Sy givenin Figure PA. 1. Is there more than one minimal form for any of these functions?
If so. derive all of them.

VN, 0y [ R SN
0 0 0 I 1 d 0
0 0 1 I | | |
0 | 0 0 1 0 |
0 | 1 0 1 | d
| 0 0 I 0 d d
| 0 ! 0 0 0 d
] | 0 I 0 I |
! 1 1 I 1 I 0

Figure PA.1 logic functions for
Problem A.3.

Find the simplest sum-of-products form for the function f using the dont-care condition
d, where

J o= (X 4+ 0xs 4 X)) + XX+ a)
and
d = .\']fj(,\'},\'_; + .":;.i 1)+ j\""|.’\"3.\'_1
Consider the function

f(,\'] ...... i) = (v D x3) + (v + fi"].i’;).\q + a0

() Use a Karnaugh map to find a minimum cost sum-of-products (SOP) expression
for /.

(h) Find a minimum cost SOP expression for f. which is the complement of /. Then.
complement (using de Morgan’s rule) this SOP expression to find an expression for
. The resulting expression will be in the product-of-sums (POS) form. Compare
its cost with the SOP expression derived in Part ¢. Can you draw any general
conclusions from this result?

Find a minimum cost implementation of the function f(xy. v, x3. vy). where /= Lif
either one or two of the input variables have the logic value |. Otherwise, f = 0.

Figure A.6 defines the 4-bit encoding of BCD digits. Design a circuit that has four
inputs labeled b3, .. .. by. and an output f. such that f = 1 if the 4-bit input pattern
is a valid BCD digit: otherwise f = (. Give a minimum cost implementation of this
cireuit.
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Two 2-bit numbers A = ajap and B = b b, are to be compared by a four-variable
function f(ay, ap. by, by). The function f is to have the value 1 whenever

v(A) < v(B)

where v(X) = x; x 2! + xy x 2° for any 2-bit number. Assume that the variables A
and B are such that [v(A) — v(B)| < 2. Synthesize f using as few gates as possible.

Repeat Problem A.8 for the requirement that f = | whenever
v(A) > v(B)
subject to the input constraint
v(A)+u(B) <4
Prove that the associative rule does not apply to the NAND operator.

Implement the following function with no more than six NAND gates, each having
three inputs.

f = x4 xpxoxs + X ERT x4 XX x0Ty
Assume that both true and complemented inputs are available.

Show how to implement the following function using six or fewer two-input NAND
gates. Complemented input variables are not available.

f=x10+x+X0

Implement the following function as economically as possible using only NAND gates.
Assume that complemented input variables are not available.

=0 +x)E +7xy)

A number code in which consecutive numbers are represented by binary patterns that
differ only in one bit position is called a Gray code. A truth table for a 3-bit Gray code
to binary code converter is shown in Figure PA 2a.

(a) Implement the three functions f, f3, and f3 using only NAND gates.

(b) Alower-cost network for performing this code conversion can be derived by noting
the following relationships between the input and output variables.

fi=a
h=5H&b
J3i=f®c

Using these relationships, specify the contents of a combinational network N that can
be repeated, as shown in Figure PA.2b, to implement the conversion. Compare the
total number of NAND gates required to implement the conversion in this form to the
number required in Part a.
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3-bit Gray code Binary code
inputs outputs
a b ¢ fvo s
0 0 0 0 0 ¢
0 0 ] 0 0 1
0 | i 0 i 0 (a) Three-bit Gray code to
0 i 0 0 | | binary code conversion
| 1 0 I 0 0
] | 1 I 0 1
| 0 1 | 1 0
1 0 0 l | |
a b «
) ,
T—=] N? =] N? N? (b) Code conversion network
/i I I

Figure PA.2 Gray code conversion example for Problem A.14.

A.15 Implement the XOR tunction using only 4 two-input NAND gates.

A.16 Figure A.37 defines a BCD to seven-segment display decoder. Give an implementation
for this truth table using AND. OR. and NOT gates. Verify that the same functions are
correctly implemented by the NAND gate circuits shown in the figure.

A.17  In the logic network shown in Figure PA.3. gate 3 fails and produces the logic value |
at its output F1 regardless of the inputs. Redraw the network. making simplifications

=

Xy

Figure PA.3 A faulty network.
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wherever possible. to obtain a new network that is equivalent to the given taulty network
and that contains as few gates as possible. Repeat this problem. assuming that the fault
is at position F2. which is stuck at a logic value 0.

Figure A.16 shows the structure of a general CMOS circuit. Derive a CMOS circuit
that implements the function

f(.\'[ CeLoNy) =X 4 TNy
Use as few transistors as possible. (Hint: Consider series/paraliel networks of transistors.
Note the complementary series and parallel structure of the pull-up and pull-down
networks in Figures A.17 and A.18.)

Draw the waveform for the output Q in the JK circuit of Figure A.31. using the input
waveforms shown in Figure PA 4 and assuming that the flip-flop is initially in the O state.

< [ []

Figure PA.4  Input waveforms for a JK flipflop.

Derive the truth table for the NAND gate circuit in Figure PA.5. Compare it to the truth
table in Figure A.24/5 and then verify that the circuit in Figure A.26 is equivalent to the
circuit in Figure A.25q.

Figure PA.5 NAND latch.

Compute both the setup time and the hold time in terms of NOR gate delays for the
negative edge-triggered D flip-flop shown in Figure A.29.

In the circuit of Figure A27a, replace all NAND gates with NOR gates. Derive a
truth table for the resulting circuit. How does this circuit compare with the circuit in
Figure A.274?
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Figure A.33 shows a shift register network that shifts the data to the right one place at
a time under the control of a clock signal. Modify this shift register to make it capable
of shifting data either one or two places at a time under the control of the clock and an
additional control input ONE/TWO.

A 4-bit shift register that has two control inputs — INITIALIZE and RIGHT/LEFT —
is required. When INITIALIZE is set to 1, the binary number 1000 should be loaded
into the register independently of the clock input. When INITIALIZE = 0, pulses at
the clock input should rotate this pattern. The pattern rotates right or left when the
RIGHT/LEFT input is equal to 1 or 0, respectively. Give a suitable design for this
register using D flip-flops that have preset and clear inputs as shown in Figure A.32.

Derive a three-input to eight-output decoder network, with the restriction that the gates
to be used cannot have more than two inputs.

Figure A.35 shows a 3-bit up counter. A counter that counts in the opposite direction
(thatis, 7,6,...,1,0,7,...)is called adown counter. A counter capable of counting in
both directions under the control of an UP/DOWN signal is called an up/down counter.
Show a logic diagram for a 3-bit up/down counter that can also be preset to any state
through parallel loading of its flip-flops from an external source. A LOAD/COUNT
control is used to determine whether the counter is being loaded or is operating as a
counter.

Figure A.35 shows an asynchronous 3-bit up-counter. Design a 4-bit synchronous up-
counter, which counts in the sequence 0, 1, 2, ..., 15,0 .... Use T flip-flops in your
circuit. In the synchronous counter all flip-flops have to be able to change their states
at the same time. Hence. the primary clock input has to be connected directly to the
clock inputs of all flip-flops.

A switching function to be implemented is described by the expression

F(xp,x2, X3, X4) = x1X3%4 + X1 X354 + X2X3%4

(a) Show an implementation of f in terms of an eight-input multiplexer circuit.
(b) Can f be realized with a four-input multiplexer circuit? If so, show how.

Repeat Problem A.28 for
S (X, X2, X3, X4) = X1Xx3 -+ x2x3x3 + XXy

(@) What is the total number of distinct functions, f(x;, x>, x3), of three binary
variables?

(b) How many of these functions are implementable with one PAL circuit of the type
shown in Figure A.43?

(¢) What is the smallest change in the circuit in Figure A.43 that should be made to
allow any three-variable function to be implemented with a single PAL circuit?

Consider the PAL circuit in Figure A.43. Suppose that the circuit is modified by adding
a fourth input variable, x;, whose uncomplemented and complemented forms can be
connected to all four AND gates in the same way as the variables xy, x,, and x3.
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(a) Can this modified PAL be used to implement the function
S =0+ 0010+ X0y
If so. show how.
() How many functions of three variables cannot be implemented with this PAL?

Complete the design of the up/down counter in Figure A.47 by using the state assignment
S0 =10,S1 = 11.S2 = 01. and S3 = 00. How does this design compare with the one
given in Section A.13.1?

Design a 2-bit synchronous counter of the general form shown in Figure A.50 that
counts in the sequence ....0,3,1,2.0,..., using D flip-flops. This circuit has no
external inputs. and the outputs are the flip-flop values themselves.

Repeat Problem A.33 for a 3-bit counter that counts in the sequence ..., 0, I, 2. 3. 4.
5.0...., taking advantage of the unused count values 6 and 7 as don’t-care conditions
in designing the combinational logic.

In Section A.13. D flip-flops were used in the design of synchronous sequential circuits.
This is the simplest choice in the sense that the logic function values for a D input are
directly determined by the desired next-state values in the state table. Suppose that JK
flip-flops are to be used instead of D flip-flops. Describe, by the construction of a table.
how to determine the binary value for each of the J and K inputs for a flip-flop as a
function of each possible required transition from present state to next state for that
flip-flop. (Hint: The table should have four rows, one for each of the transitions 0 — 0.
0— 1.1 — 0,and I — I;and each J and K entry is to be 0, 1, or “don’t care,” as
required.) Apply the information in your table to the design of individual combinational
logic functions for each I and K input for each of the two flip-flops of the 2-bit binary
counter of Problem A.33. How does the simplicity of the logic required compare to
that needed for the design of the counter using D flip-flops?

Repeat Problem A.34 using JK flip-flops instead of D flip-flops. The general procedure
for doing this is provided by the answer to Problem A.35.

In the vending machine example used in Section A.13.4 to illustrate the finite state
machine model, a single binary output, z. was used to indicate the dispensing of mer-
chandise. Change was not provided as an output. The purpose of this problem is to
expand the output to include providing proper change. Assume that the only input
sequences of dimes and quarters are: 10-10-10, 10-25, 25-10. and 25-25. Coincident
with the last coin input. the outputs to be provided for these sequences are 0, 5. 5, and
20, respectively. Use two new binary outputs, 2> and 3. to represent the three distinct
outputs. (This does not correspond directly to coins in use, but it keeps the problem
simple.)

(a) Specify the new state table that incorporates the new outputs.
(b) Develop the logic expressions for the new outputs z» and 5.
(c) Are there any equivalent states in the new state table?
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Finite state machines can be used to detect the occurrence of certain subsequences in
the sequence of binary inputs applied to the machine. Such machines are called finite
state recogiizers. Suppose that a machine is to produce a 1 as its output coincident with
the second 1 in the pattern 011 whenever that subsequence occurs in the input sequence
applied to the machine.

(«) Draw the state diagram for this machine.

(h) Make a state assignment for the required number of flip-flops and construct the

assigned state table. assuming that D flip-flops are to be used.

(¢) Derive the logic expressions for the output and the next-state variables.

Repeat Part « only of Problem A.38 for a machine that is to recognize the occurrence
of either of the subsequences 011 and 010 in the input sequence. including the cases
where overlap occurs. For examiple. the input sequence 110101011. .. is to produce the
output sequence 000010101, . ..
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